The Relationship between Glucose Levels and Physical Activity

Rebecca Eberle, Honors Kinesiology, Bryce Daniels, Ashton Human, Jared Collier, Sarah Schwartz, Lindsay Spitaletto, Michelle Gray, Erin K. Howie.

1University of Arkansas, Fayetteville, AR, USA

INTRODUCTION

- Elevated glucose levels can increase the risk for disease
- Physical activity behaviors are associated with glucose levels
- Limited research on young adults and their glucose levels compared to activity

OBJECTIVES

- To complete a cross sectional study and determine associations between fasting glucose with physical activity, and fitness

HYPOTHESES

- More physical activity and higher fitness will result in a lower, normalized glucose level

METHODS

- 26 Participants aged 18-25
- Measures: 6-hour fasted glucose measurement, and treadmill testing
- A GT9X accelerometer measured the participants’ 24-hours, 7 days of activity
- Glucose levels were compared to VO2 max, maximum rate of oxygen consumption, from the treadmill test and to their weekly vector magnitude and step counts to determine physical activity.
- Statistical analysis: the relationship between fitness and physical activity with blood glucose was assessed using linear regression, additionally adjusted for age, sex, and BMI

Fitness Assessment Measures

- Bruce Protocol
- Treadmill Test (ml/kg/min)

RESULTS

Table 1: Sample Descriptives

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>p-value comparing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>21.3</td>
<td>21.2</td>
<td>.835</td>
</tr>
<tr>
<td>Weight (lbs)</td>
<td>182.8</td>
<td>147.5</td>
<td>.005</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.7</td>
<td>24.2</td>
<td>.320</td>
</tr>
<tr>
<td>Resting blood glucose (mg/dL)</td>
<td>100.0</td>
<td>88.4</td>
<td>.041</td>
</tr>
<tr>
<td>VO2 max (ml/kg/min)</td>
<td>47.2</td>
<td>36.0</td>
<td>.007</td>
</tr>
<tr>
<td>Physical Activity (CPM)</td>
<td>2080.4</td>
<td>1922.2</td>
<td>.333</td>
</tr>
<tr>
<td>Step Count</td>
<td>11,494.5</td>
<td>11,846.2</td>
<td>.764</td>
</tr>
</tbody>
</table>

- In unadjusted models, VO2max was positively associated with blood glucose (p=0.039)
- Step count was negatively associated with blood glucose (p=0.02)
- When adjusted for age, sex, and BMI, VO2max was not statistically associated with blood glucose (p=0.668), but step count remained negatively associated

Table 2: Associations between physical activity and blood glucose unadjusted

<table>
<thead>
<tr>
<th></th>
<th>Estimate (β)</th>
<th>Standard Error</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO2</td>
<td>0.9</td>
<td>0.4</td>
<td>0.05, 1.7</td>
<td>0.039</td>
</tr>
<tr>
<td>Physical Activity (CPM)</td>
<td>0.003</td>
<td>0.007</td>
<td>-0.01, 0.02</td>
<td>0.716</td>
</tr>
<tr>
<td>Step Count</td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.004, -0.0004</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 3: Associations between physical activity and blood glucose adjusted for age, sex, BMI

<table>
<thead>
<tr>
<th></th>
<th>Estimate (β)</th>
<th>Standard Error</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO2</td>
<td>0.2</td>
<td>0.5</td>
<td>-0.9, 1.3</td>
<td>0.668</td>
</tr>
<tr>
<td>Physical Activity (CPM)</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.01, 0.02</td>
<td>0.434</td>
</tr>
<tr>
<td>Step Count</td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.003, -0.0001</td>
<td>0.038</td>
</tr>
</tbody>
</table>

DISCUSSION

- Overall findings:
 - Higher step count → lower blood glucose
 - Higher VO2 max → higher blood glucose
- Mechanisms:
 - Relationship between fitness and physical activity with blood glucose was assessed using linear regression, additionally adjusted for age, sex, and BMI
- Limitations of study:
 - Lack of compliance with fasting from participants
 - Small population size
- Strengths of study:
 - Obtaining fasted blood samples
 - Successfully administering the fitness assessments
 - Analyzing the accelerometer data
- Future studies:
 - Monitor blood glucose levels before and after amounts of exercise

CONCLUSIONS

- Proven hypothesis of higher physical activity associated with lower blood glucose.
- Increase in weekly steps could improve overall health
- Disproved hypothesis of higher fitness associated with lower blood glucose.
- This study was important to determine associations between fasting glucose with physical activity and fitness.
- This study also helped by promoting glucose test screening to young individuals.

ACKNOWLEDGEMENTS

The study was funded by Honors Team Grant, Honors Equipment Grant and Honors Student Research Grants. We thank all the participants of this study for their time and dedication throughout the study.

CONTACT INFORMATION

Website: exerciseismedicine.uark.edu
Email: eim@uark.edu; rebeberle@uark.edu

@uarkeim @uark_eim